A real-time optimization algorithm to maximize intersection efficiency using connected and autonomous vehicles

S. Ilgin Guler, PhD
Assistant Professor, Penn State University

TESC
December 7, 2017
Introduction

- Vehicular technology has rapidly improved over the last decade and is expected to improve even further in the near future.

- Advances in communications now allow vehicles to collect and share information about their surroundings with adjacent vehicles and infrastructure.

- These types of vehicles that can “speak” to the infrastructure are often referred to as Connected Vehicles.

- The next step is the proliferation of self-driving, or autonomous, vehicles.

http://www.dot.state.fl.us/trafficoperations/ITS/Projects_Deploy/CV/Connected_Vehicles.shtml

Introduction

• These advancements offer exciting opportunities for the next-generation of traffic control.

• Can be used to design a more efficient signal control strategy
 • Even with actuated signals → still subject to restrictions such as minimum or maximum green times.
 • There could be a margin for improving the efficiency of traffic operations at intersections by better catering to the traffic demand.

• Moreover, it can be possible to control the trajectory of autonomous vehicles with a centralized controller
Goal

• To optimize traffic operations at an intersection by using information from connected vehicles such as the position and speed of individual vehicles.

• To achieve this goal:
 • A control algorithm for traffic operations while allowing for trajectory design of autonomous vehicles is developed.
• Traditionally, there are three general approaches to traffic signal control:
 • Fixed-time
 • Actuated
 • Adaptive

• Connected vehicle technology can be used to:
 • Modify trajectory of fully autonomous vehicles (safety application) | Li and Wang, 2006; Zohdy and Rakha, 2012; Lee and Park, 2012
 • Optimize phases (cycle length and green splits) of a signal (operations application) | Grandinescu et al., 2007; He et al., 2012; Lee et al., 2013; Goodall et al. 2013
 • Optimize vehicle discharge sequence (operations application) | Dresner and Stone, 2004; Wu et al. 2007; Cai et al., 2012
Signal Control Algorithm

- Three types of vehicles are considered:
 - Traditional vehicles,
 - Connected but non-autonomous vehicles (connected vehicles), and
 - Autonomous vehicles

- Inputs:
 - Information obtained from connected vehicles:
 1. The time it enters the “zone of interest”
 2. The distance from the intersection at which it comes to a stop (if a queue exists)
Signal Control Algorithm

Control Layer

Trigger events:
1) new arrival of CAVs into the zone of interest, or 2) a CAV stops

Input: Observed vehicles in the zone of interest

Proposed platoon-based algorithm:

Step 1: Platoon identification
Compare spacing or headway of consecutive vehicles with a critical, pre-determined value

Step 2: Departure sequence optimization
Identify the departure sequence of platoons with minimum delay.

Step 3: Longitudinal trajectory guidance
Design speed for first AV in each platoon to minimize number of stops

Output:
Optimal departure sequence and designed speed of lead AVs in each platoon

Simulation Layer

Continue the program until all vehicles have passed the stop line.

Switch traffic signal, if needed, based on the optimal departure sequence.

Determine whether a trigger event happens. If so, enter the control layer.

Update the acceleration rate, speed and location of all vehicles at each time step (50 ms) based on IDM.
Platoon Identification

- Non-CAV vehicles are identified if a CAV stops behind it.
- Cars are platooned based on minimum spacing or headway.
Platoon Identification

- Dark blue: autonomous vehicles.
- Light blue: connected but not autonomous vehicles.
- Yellow: conventional vehicles.
- Rectangle: No platoon
- Oval: Platoon

12/7/17
Solution method

• Estimate delays of departure sequences to identify the optimal departure sequence that will result in minimum delay:
 • Enumeration method, which simply identifies all possible combinations of platoon departure sequences
 • Branch-and-bound method that uses an intelligent tree search strategy to identify the optimal platoon departure sequence.
Departure sequence optimization

- 6 possible departure combinations considered:
 1,2,3,4
 1,2,4,3
 1,3,2,4
 2,1,3,4
 2,1,4,3
 2,4,1,3
Longitudinal Trajectory Guidance

- **Input:**
 - Departure sequence from upper-level algorithm

- **Modify car trajectories to:**
 - Let vehicles pass the intersection at a specific time,
 - With the maximum possible speed and,
 - If possible, without stopping

- The trajectory design of each individual autonomous vehicle is done based on the real or estimated traffic information (departure time, speed, etc.) of the cars in front of it.
Longitudinal Trajectory Guidance

- Accounts for realistic acceleration or deceleration of cars
Longitudinal Trajectory Guidance

- Dark blue: autonomous vehicles.
- Light blue: connected but not autonomous vehicles.
- Yellow: conventional vehicles.
- Rectangle: No platoon
- Oval: Platoon
Benefits of Platooning

A critical headway of 2.5 seconds and critical spacing of 15 meters is chosen since it provides significant computational efficiency without much change to average delay or stop.

Average delay increases slightly as more cars are platooned together.

Average number of stops increase as more cars are platooned together but the magnitude of increase is small.
Modeling 4 multi-lane approaches

- Hypothetical approaches for vehicles that will discharge during the same phase are formed
 - Multiple lanes are collapsed onto one
 - Opposite directions are collapsed onto one
Modeling 4 multi-lane approaches with conflicting left turns

- Hypothetical approaches for vehicles that will discharge during the same phase are formed
 - 4 hypothetical lanes are formed corresponding to the 4 phases:
 - NBT+SBT, NBL+SBL, EBT+WBT, EBL+WBL
Modeling 4 multi-lane approaches with conflicting left turns
Sensitivity of algorithm to PR

Computation time significantly increases as more cars are connected, and also as more are autonomous.

Average delay reduces with more information, but marginal benefits after 40% connected ratio are very small.

Average number of stops decreases as more cars are autonomous.
Other applications

• A demand responsive control strategy can be used to adapt to different traffic situations.

• This strategy dynamically switches between the two (or three) algorithms based on demand and information level:
 • Connected vehicle algorithm with trajectory design
 • Connected vehicle without trajectory design
 • Actuated algorithm (if the necessary infrastructure is available).
Other applications

• Multimodal traffic control
 • Account for buses, and bus stops to minimize total passenger delay
 • An alternative to providing Transit Signal Priority
Conclusions