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Introduction

 \ehicular technology has rapidly
Improved over the last decade and
IS expected to improve even
further in the near future.

* Advances in communications
now allow vehicles to collect and
share information about their
surroundings with adjacent
vehicles and infrastructure.
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http://www.dot.state.ﬂ.us/trafficopeations/l/ojects_Debon/CV/Connected_Vehi
cles.shtm

» These types of vehicles that can
“speak” to the infrastructure are
often referred to as Connected
Vehicles.

» The next step is the proliferation
of self-driving, or autonomous,
vehicles.

o -
http://www.automotiveworld.com/analysis/dot-suggests-us-standardisation-of-
connected-vehicle-devices-and-roadway-systems/
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Introduction

S » These advancements offer exciting
‘r opportunities for the next-generation of
; - traffic control.
@22

» Can be used to design a more efficient
—_— - signal control strategy

‘ EH  Even with actuated signals = still subject to
restrictions such as minimum or maximum
green times.

* There could be a margin for improving the
efficiency of traffic operations at intersections
by better catering to the traffic demand.

* Moreover, it can be possible to control the
trajectory of autonomous vehicles with a
centralized controller
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Goal

* To optimize traffic operations at an intersection by
using information from connected vehicles such as
the position and speed of individual vehicles.

 To achieve this goal:

A control algorithm for traffic operations while
allowing for trajectory design of autonomous
vehicles is developed.
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Background

 Traditionally, there are three general approaches to
traffic signal control:
e Fixed-time
 Actuated
o Adaptive

» Connected vehicle technology can be used to:

» Modify trajectory of fully autonomous
vehicles (safety application)

» Optimize phases (cycle length and green
splits) of a signal (operations application)

» Optimize vehicle discharge sequence
(operations application)
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Signal Control Algorithm

Zone of
interest

e Three types of vehicles are considered:
 Traditional vehicles,

e Connected but non-autonomous vehicles
(connected vehicles), and

o Autonomous vehicles

* Inputs:
 Information obtained from connected
vehicles:
1. The time it enters the “zone of interest”

2. The distance from the intersection at
which it comes to a stop (if a queue
exists)
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Signal Control Algorithm

Control Layer Simulation Layer
v !
Trigger events: . .
1) new arrival of CAVs into the zone of interest, or 2) a CAV stops Cpntmue the program until a‘ll
T vehicles have passed the stop line.

Input: Observed vehicles in the zone of interest
l - Switch traffic signal, if needed,
Proposed platoon-based algorithm: based on the optimal departure

| Step 1: Platoon identification | sequence.
| Compare spacing or headway of consecutive vehicles with a critical, :
pre-determined value |

X ] . | Determine whether a trigger event
| Step 2: Departure sequence optimization S I ter th trol |
Identify the departure sequence of platoons with minimum delay. appens. 11 S0, Cnier the controt fayer.

L e = - e
Update the acceleration rate, speed
' and location of all vehicles at each
Output: time step (50 ms) based on IDM.

Optimal departure sequence and designed speed of lead AVs in each platoon

I |
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Platoon ldentification

* Non-CAV vehicles are identified if a CAV stops behind it.
e Cars are platooned based on minimum spacing or headway
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Vehicles on the road Input to the algorithm Group vehicles into platoons
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Platoon Identification
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Solution method

 Estimate delays of departure sequences to identify
the optimal departure sequence that will result in
minimum delay:

« Enumeration method, which simply identifies all
possible combinations of platoon departure sequences

« Branch-and-bound method that uses an intelligent tree
search strategy to identify the optimal platoon departure
sequence.
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Departure sequence optimization

* 6 possible departure
. N combinations considered:

1,2,3,4
1,2,4,3
1,3,2,4
2,1,3,4
2,1,4,3
2,4,1,3
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Longitudinal Trajectory Guidance
I ——
 |nput:
 Departure sequence from upper-level algorithm

* Modify car trajectories to:
* Let vehicles pass the intersection at a specific time,
 With the maximum possible speed and,
o If possible, without stopping

» The trajectory design of each individual autonomous vehicle
IS done based on the real or estimated traffic information
(departure time, speed, etc.) of the cars in front of It.
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Longitudinal Trajectory Guidance

e Accounts for realistic acceleration or deceleration of
cars

[ distance [ distance
, s ..-....._,-"- ."I_‘I ...._-' ) # -
; . F Vi o
.VD/ ‘/
.-‘. .-_.-'-.‘. 'hl
r, 0 oomstant
_decelerate | constant speed ) Accelerate speed
» time - lime
ty l| L, 1"!.! I|. t-.‘
ty: current time
L, expected departure time
Vi current speed
Vg designed speed

12/7/17 TESC 13



Longitudinal Trajectory Guidance
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Benefits of Platooning

Computation time [ms]

50

A critical headway of 2.5 seconds and critical
spacing of 15 meters is chosen since it
provides significant computational efficiency
without much change to average delay or
stop
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Average delay increases slightly as more
cars are platooned together

Critical spacing [m]

Average number of stops

15 2 25 3 35 4 4.5 5

Critical headway [s]

Average number of stops increase as more
cars are platooned together but the
magnitude of increase is small.

Critical spacing [m]

15 2 25 3 35 4 4.5 5

Critical headway [s]

12/7/17 TESC 15



Modeling 4 multi-lane approaches

» Hypothetical approaches for vehicles that will
discharge during the same phase are formed
e Multiple lanes are collapsed onto one
« Opposite directions are collapsed onto one

€1 €1
«— —_ B1)
«'pbll B3
«{b1 b2 bl b2, I::>
[an — Bl osr em e
— Wl DI — EEZ: dlL DL bl
Al
i1
A2 A2 A2
Four-multi-lane-approach intersections Multiple lanes collapsed into one Four approaches folded into two
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Modeling 4 multi-lane approaches with
conflicting left turns

» Hypothetical approaches for vehicles that will
discharge during the same phase are formed
4 hypothetical lanes are formed corresponding to the 4

phases:
« NBT+SBT, NBL+SBL, EBT+WBT, EBL+WBL

[d1] —4 II: idh b1+

— B1 DI —

7t ) L

L™
[al iall
o

Equivalent intersection with four single-
lane approaches
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Modeling 4 multi-lane approaches with
conflicting left turns
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Sensitivity of algorithm to PR
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Other applications

» A demand responsive control strategy can be used
to adapt to different traffic situations.

e This strategy dynamically switches between the two
(or three) algorithms based on demand and
Information level:

« Connected vehicle algorithm with trajectory design
« Connected vehicle without trajectory design

« Actuated algorithm (if the necessary infrastructure is
available).
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Other applications

 Multimodal traffic control

« Account for buses, and bus stops to minimize total
passenger delay

« An alternative to providing Transit Signal Priority
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Conclusions
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