

Reliability of Safety Management Methods Systemic Safety Programs

Presented by **Tim Harmon, PE**

December 6, 2017

Outline

- Project Background
- Describe Problem
- Research Methods
- Interpreting Results
- Implications for Practice

RSDP Toolbox

Choose from the options at the right to enter the Toolbox. The Toolbox contains resources that will help your organization build a new or strengthen an existing roadway safety data program.

Use the Advanced Search below for keyword and category resource search.

Manage

Managers that understand the costs and benefits of alternative business practices can effectively and efficiently manage the agency's safety program. This section offers information about data-driven decision-making and planning including the costs and benefits of state-of-the-art analysis methods and the data management and governance structures required to support alternative methods. These tools can help managers in developing policies and practices, setting budgets, allocating resources, making safety investments, identifying training needs, and managing a safety program.

Toolbox Primer

Learn how to use the Toolbox to find an appropriate tool based on specific needs and capabilities.

> Watch the Toolbox Primer How-To Video

Share Tools

Identify Gaps

Provide Feedback

FHWA Roadway Safety Data and Analysis Toolbox

https://safety.fhwa.dot.gov/rsdp/

Reliability of Safety Management Methods

Series of Guides

- Network Screening
- Network Screening Measures
- Diagnosis
- Countermeasure Selection
- Safety Effectiveness Evaluation
- Systemic Safety Programs

https://safety.fhwa.dot.gov/rsdp/

Systemic Safety Programs Guide

- Define "crash-based" and "systemic" projects
- Characterize state-of-the-practice
- Demonstrate value of systemic approach
- Guidance for allocating funds

Crash-Based and Systemic Projects

Start with the Basics

- Crashes occur with frequency and severity
- Caused by driver, vehicle, roadway, or other
- Engineering-related improvements:
 - Fix geometric or traffic deficiencies
 - Reduce negative impacts of other factors
- Spectrum of project types

Crash-Based Projects

- Sites have unique crash experience
- Address sites with high PSI
- One project per site
- Diagnose every location
- Unique countermeasures
- Higher effectiveness
- Lower efficiency

Example: Roundabout

Systemic Projects

- Many sites have similar experience
- System-level diagnosis
- Target specific concern
- Many sites per project
- Predetermined countermeasures
- Lower effectiveness
- Higher efficiency

Example: Flashing Yellows

Difference is in the Diagnosis

Crash-Based (Hotspot)

 Select and treat sites based on site-specific safety concerns

Systemic

 Select and treat sites based on **network**wide safety concerns

Both methods can have:

- High or low cost treatments
- Basic to advanced methods
- High or low treatment effectiveness

How to Compare Effectiveness?

- Many interpretations of systemic in practice
- No information about systemic approach
- Difficult to identify systemic projects
- Minimal data about pretreatment frequency
- Wide range of potential costs
- Wide range of CMFs

How to Compare Effectiveness?

Typical Implementations....

Crash-Based

- Higher unit cost
- Higher effectiveness

Systemic

- Lower unit cost
- Lower effectiveness

Value of Systemic Projects

General Method

- Select crash-based and systemic countermeasures
- Analyze countermeasure data
- Consider hypothetical implementations
- Compare effectiveness

Characterize Typical Projects

- Select treatments for study
- Collect implemented project data
 - 2014 HSIP reports
 - FHWA research
 - State databases
- Some simple before-after evaluation data

Crash-Based Countermeasures

- Add left turn lane
- High friction surface
- Reconfigure intersection
- Reduce skew and add LTL
- Road diet w/o resurface
- Road diet with reconstruction
- Roundabout

Systemic Countermeasures

- Cable median barrier
- Rumble strips
- Horizontal curve warning signs
- Ramp curve warning signs
- Various signal improvements
- Various stop improvements

Methodology

- \$10,000,000 of each countermeasure
- Average cost per site
- Average CMF
- Average frequency before treatment

Hypothetical Implementations

Economic Measure	Crash-Based	Systemic
Average Cost	\$9,901,286	\$9,998,000
Average Benefit	\$226,519,265	\$700,219,396
Overall Benefit-Cost Ratio	23.0	70.0

Allocating Funding

Typical Network Screening

Rural Urban

When to Apply Each Approach

Percentile

Project Breakeven Equation

$$ACF = \frac{AVC_C - AVC_S}{CC * (CMF_S - CMF_C)}$$

- ACF = breakeven average crash frequency
- AVC = annualized project costs
- CC = average crash cost
- CMF = crash modification factor

Applying the Breakeven Equation

- Determine sites that warrant higher investment
- Use for average project costs and CMFs
- Use for site-specific alternatives

• When $CMF_c > CMF_s$ and $AVC_c > AVC_s$ (or vice versa), choice is obvious

Comprehensive Safety Programs

When to Use Each Approach?

Investment Risk

Example Calculation with Average Data

Data	Crash-Based	Systemic
Average CMF	0.73	0.90
Average cost per site	\$20,000	\$750
Average crash cost	\$55 <i>,</i> 900	\$55,900

$$ACF = \frac{\$20,000 - \$750}{\$55,900 \times (0.90 - 0.73)} = 2.0$$

Optimization Example

Crash Reduction (per site)

Project Cost (per site)

Comprehensive Safety Programs

- Cannot solely address site-specific concerns
- Cannot solely address network-wide concerns
- ~75% of HSIP to crash-based projects

Considerations

- Strengths and limitations
- Objectives (policy, goals, other)
- SHSP and performance targets
- Data requirements
- Jurisdiction and agency

Considerations (cont'd)

Future research needs

Tracking systemic projects

- Prepare for evaluations
- Specific locations, not corridors
- Site-specific/typical countermeasure data
- Project type

Summary

- "Crash-based" and "Systemic"
- Hypothetical implementations
- Breakeven equation
- Consider objectives

Acknowledgements

- Co-authors: Frank Gross, Geni Bahar, and Kara Peach
- State DOT Partners: RIDOT, SCDOT

FHWA Technical Working Group:

- Stuart Thompson , FHWA
- Ray Krammes, FHWA
- Karen Scurry, FHWA
- Marc Starnes, FHWA
- Craig Thor, FHWA
- Derek Leuer, MnDOT
- Brian Porter, WisDOT
- Kevin Scopoline, WisDOT

Tim Harmon, PE

tharmon@vhb.com

919.741.5542

Offices located throughout the east coast

0

www.vhb.com